ON THE OIL OF HOKKE (Pleurogrammus monopterygius, Pallas), WITH SPECIAL REFERENCE TO THE OCCURRENCE OF NEW HIGHLY UNSATURATED C28-FATTY ACIDS.

By Sei-ichi UENO and Masayoshi IWAI.

Received July 7th, 1936. Published October 28th, 1936.

"Hokke" (Pleurogrammus monopterygius, Pallas) is a fish widely distributed in the sea of the northern part of Honshu and Hokkaido, Japan. According to the growth of the fish, it is classified into kinds of the following names; "Taraba-hokke" (about 420 mm. in length), "Chuhokke" (about 350 mm. in length) and "Rosoku-hokke" (about 300 mm. in length), etc. These fishes contain much quantities of oil, but their flesh is disagreeable to our taste. Hitherto, the Hokke oil has scarcely appeared in the market and the properties of the oil have not been investigated.

A sample of oil (probably of "Taraba-hokke") from Matsumae Hokkaido, had the following properties: acid value, 19.0; n_D^{20} , 1.4714; d_4^{15} , 0.9153; saponification value, 183.3; iodine value (Wijs), 92.1; oxidised acid, 0.10%; unsaponifiable substances, about 1.5%. The oil was a liquid having a reddish orange colour and separated much solid fat in winter season.

The fatty acids freed from unsaponifiable matters showed the following properties: n_D²⁰, 1,4623; neutralisation value, 184.2; iodine value (Wijs), 96.04; ether insoluble polybromide, 9.77%; Br of polybromide, 68.48%;

The solid acids obtained by the lead-salts-alcohol method showed a comparatively high percentage of unsaturated acids: solid acids: yield, 29.2%; iodine value, 20.9; neutralisation value, 190.0; m.p. $41.8-44.7^{\circ}$ C. and liquid acids: yield, 70.8%; iodine value, 114.7; neutralisation value, 170.6. As the solid acids are undoubtedly composed mainly of cetoleic acid $C_{22}H_{42}O_{2}$, the following results can be obtained by calculation: saturated acids: 11.3%; Neutralisation value, 205.0; unsaturated acids: 88.7%.

The results of the fractional distillation of methyl esters of mixed fatty acids freed from unsaponifiable matters are given in Table 1 and shown diagrammatically in Fig. 1.

Table 1.

Fraction	Distillation temperature (°C./5 mm.)	Saponification value	Iodine value	n_D^{15}	Yield (g.)
1	145—150	204.8	26.1	1.4478	47.5
2	150—155	216.7	27.7	1.4451	31.4
3	155—160	220.2	32.8	1.4451	33.7
4	160—165	219.7	35.7	1.4453	36.5
5	165—170	216.0	39.5	1.4461	33.3
6 7 8 9	170—175 175—180 180—185 185—190 190—195	215.2 207.5 208.2 197.3 190.8	50.4 58.0 67.3 82.7 94.8	1.4488 1.4498 1.4518 1.4546 1.4578	54.9 79.0 84.0 126.1 73.1
11	195—200	186.3	105.4	1.4598	67.5
12	200—205	182.4	113.1	1.4608	100.5
13	205—210	178.6	115.6	1.4626	104.0
14	210—215	175.3	114.5	1.4638	30.6
15	215—220	174.1	117.7	1.4640	35.5
16	220—225	171.5	118.5	1.4643	51.3
17	225—230	168.8	122.7	1.4651	97.9
18	230—235	162.8	124.3	1.4668	68.1
19	235—240	157.2	129.5	1.4708	7.2
20	240—243	152.0	135.9	1.4788	6.2
Residue		145.2	117.7	1.4833	33.8

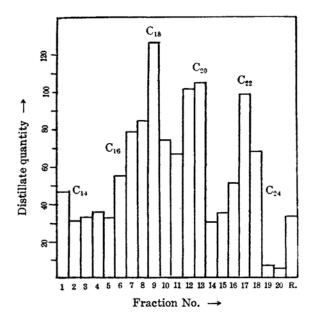


Fig. 1. Diagrammatic representation of the result of fractional distillation of methyl esters.

By comparison with many examples of distillation of methyl esters of such kinds of oils, it will be easily seen that the distillates seem most likely to consist of methyl esters of following fatty acids: (1) Lower fractions 1-8: palmitic acid C₁₆H₃₂O₂ (chief component), myristic acid C₁₄H₂₈O₂, C₁₆H₃₀O₂, etc. (2) Main fractions 9, 10, and 11: oleic acid C₁₈H₃₄O₂ (chief component), stearic acid C₁₈H₃₆O₂, highly unsaturated fatty acids of C₁₈ and C₂₀, etc. (3) Fractions 13 and 14: C₂₀H₃₈O₂, C₂₀H₃₂O₂, C₂₀H₃₀O₂, C₂₀H₄₀O₂ arachidic acid, etc. (4) Fractions 17 and 18: clupanodonic acid C₂₂H₃,O₂, behenic acid C₂₂H₄₄O₂, etc. (5) Higher fractions and residue: fatty acid of C₂₄, etc.

Detection of Highly Unsaturated Fatty Acids of High Molecular Weight. A sample oil (3500 g.) was methylated by Haller's method and the methyl esters were distilled in vacuo up to 215°C/5 mm. From the distillation residue (450 g.) unsaponifiable substances were removed by means of repeated extraction with ether, and after changing again the acids into methyl esters, they were fractionally distilled. Properties of final distillates are given in Table 2.

Distillation temperature | Saponification Iodine Yield Fraction n_D^{15} (°C/3 mm. value value (g.) 1 210 - 215165.3 125.0 1.4628 31.1 2 215 - 220162.3 1.4630 117.9 12.1 3 220-2251.4640 159.9118.8 38.3 4 225 - 230153.2 126.9 1.4660 17.8 Residue 150.0 151.5 28.7

Table 2.

Highly unsaturated fatty acids were separated from these fractions as lithium salts which are soluble in 94% acetone. The properties of these fatty acids and their bromides are given in Table 3.

Table 3.

	Yield (g.)	Neutra- lisation value	Iodine value	n ¹⁵	Yield of ether-in- soluble poly- bromide (%)		Bromine content of polybromide (%)
Fraction 1	5.3	157.3	318.2	1.5003	98.0	about 220°	72.10
Fraction 3	4.0	142.1	286.5	1.5010	74.4	,, 213	70.94
Fraction 4	2.6	132.2	267.7	1.5074	50.3	,, 215	65.35
Residue	3.2	133.4	239.0	1.5120	28.4	,, 225	71.28

If only the neutralisation values be considered, the highly unsaturated fatty acid from fraction 1 may be almost identified with C_{24} -acids, and the bromine content of the polybromide (72.10%) corresponds to the value between $C_{24}H_{38}O_2$ and $C_{24}H_{36}O_2$ as shown in Table 4.

2	п.	•	•	
- 1	เล	n	10	4

	Neutralisation value	Iodine value	Br % of bromide
Found	157.3	318.2	72.10
$C_{24}H_{36}O_2$ (Nisinic acid)(1) (\digamma_6)	157.8	427.5	72.91
$\mathrm{C_{24}H_{38}O_{2}}$ (Scoliodonic acid)(2) ($^{\sim}_{5}$)	156.7	354.2	69.05

The unsaturated fatty acid from fraction 3 is similarly identified with C_{26} -acids and the bromine content (70.94%) of the bromide corresponds to a mixture of $C_{26}H_{40}O_2Br_{12}$, and $C_{26}H_{42}O_2Br_{10}$ as shown in Table 5.

Table 5.

	Neutralisation value	Iodine value	Br % of bromide
Found	142.1	286.5	70.94
$C_{26}H_{40}O_2$ (Thynnic acid)(3) (\digamma_6)	146.2	396.7	71.39
$C_{26}H_{42}O_2$ (Sibic acid)(4) (\vdash 5)	145.4	328.8	67.41

The saturated acid which was obtained by the hydrogenation of the fatty acid from fraction 2 melted at $70.3-71.5^{\circ}$ C and the determination of neutralisation value and ultimate analysis were made. (Found: C, 78.56; H, 13.06; neutralisation value, 138.9. Calculated for $C_{26}H_{52}O_2$: C, 78.8; H, 13.1; neutralisation value, 141.5).

Neutralisation values of fraction 4 and the residue correspond to C_{29} -acids. The bromine percentages of the bromides precipitated from the ether solutions of the acids (65.35 and 71.28) nearly agreed respectively with that of $C_{28}H_{46}O_2Br_{10}$ and with that of a mixture $C_{28}\Gamma_{7}$ -, $C_{29}\Gamma_{6}$ -, $C_{28}\Gamma_{5}$ -, $C_{28}\Gamma_{4}$ -acids, etc. as seen from Table 6.

⁽¹⁾ Toyama and Tsuchiya, this Bulletin. 11 (1935), 543.

⁽²⁾ S. Ueno and M. Iwai, J. Soc. Chem. Ind., Japan, 37 (1934), 251 B.

⁽³⁾ S. Ueno and C. Yonese, J. Chem. Soc. Japan, 57 (1936), 182.

⁽⁴⁾ S. Ueno and C. Yonese, J. Chem. Soc. Japan, 57 (1936), 182.

Calculated for	Neutralisation value	Iodine value	Br % of bromide
$C_{28}H_{42}O_2$ (\vdash_7)	136.7	433.1	73.16
$\mathrm{C_{28}H_{44}O_2}$ ($\stackrel{\longleftarrow}{\vdash}_6$)	136.1	369.4	69.94
$C_{28}H_{46}O_2$ (\digamma_5)	135.4	306.3	65.86
$C_{28}H_{48}O_2$ (\digamma_4)	134.7	243.4	60.56

Table 6.

The saturated acid (m.p. $72.0-73.5^{\circ}$ C.) obtained from the mixture of fraction 4 and the residue corresponds to $C_{28}H_{56}O_2$ in the results of ultimate analysis and neutralisation value. (Found: C, 79.12; H, 13.69; neutralisation value, 134.7. Calculated for $C_{28}H_{56}O_2$: C, 79.20; H, 13.10; neutralisation value, 132.2).

Detection of Cetoleic Acid $C_{22}H_{42}O_2$. The saponification values of fractions 1,2,3, etc. (Table 2) are respectively higher than those of the corresponding methyl esters of highly unsaturated acids in the literatures. This is explained if lower acids of lower unsaturation are present. The authors have isolated an acid $C_{22}H_{42}O_2$ (m.p. 33.0–33.7°) from the lithium salt of the fractions 2 and 3 (Table 2) insoluble in 94% acetone (Found: C, 77.76; H, 12.51; neutralisation value, 166.0; iodine value, 75.1. Calculated for $C_{22}H_{42}O_2$: C, 78.03; H, 12.51; neutralisation value, 165.8; iodine value, 75.0). By means of the mixed melting point the acid has been identified with cetoleic acid (m.p. 33–34°): mixed m.p. with errucic acid (m.p. 33–34°) from rape seed oil, 26.7–27.3°; mixed m.p. with cetoleic acid (m.p. 32.0–32.5°) from Menuke-fish oil⁽⁶⁾, 32.0–32.9°.

Investigation of the Unsaponifiable Constituents. The unsaponifiable matter is a reddish brown mass having many crystals of cholesterol (35.4%). The sample (20.2 g.) was subjected to fractional crystallisation from methanol as follows: Fraction 1: m.p. 142.3–144.0°, yield 6.7 g. Fraction 2: m.p. 139.5–140.1°, yield 1.5 g. Residue: liquid, yield 10.1 g.

The crystalline fractions were recrystallised several times from 95% alcohol and a substance with a melting point $146-147^{\circ}$ C was obtained, which was identified with cholesterol $C_{27}H_{46}$ O. The liquid portion, which still contained a small quantity of cholesterol, was acetylated, and the product was distilled in vacuo as given in Table 7.

⁽⁵⁾ S. Ueno and M. Iwai, J. Soc. Chem. Ind., Japan, 37 (1934), 52 B.

Table 7.

Fraction	Distillation temperature (°C/8 mm.)	Saponification value	Iodine value	Yield (g.)	Color
1	135-160	51.8	29.6	0.9	Pale yellow liquid
2	160–180	142.7	57.2	0.8	", ", (with some crystals)
3	180-200	183.3	92.6	1.4	Orange
4	200-230	159.9	104.7	1.8	,,
5	230-245	136.8	103.6	2.4	,,
Residue				1.5	Black

Acetyl derivative of	Formula	Saponification value	Iodine value
Cholesterol	C ₂₇ H ₄₅ O·COCH ₃	131.0	59.2
Oleyl alcohol	C ₁₈ H ₃₃ O-COCH ₃	182.0	82.3

From these results, the liquid unsaponifiable matter seems to consist chiefly of oleyl alcohol C₁₈H₃₃OH.

Summary.

The chemical and physical characteristics of a sample of the oil of "Hokke" (*Pleurogrammus monopterygius*, Pallas) have been determined. In the investigation of higher fractions and distillation residue, the authors have recognised the probable existence of highly unsaturated fatty acids of higher molecules such as nisinic acid $C_{24}H_{36}O_2$ (\vdash_6), scoliodonic acid $C_{24}H_{38}O_2$ (\vdash_5), thynnic acid $C_{26}H_{40}O_2$ (\vdash_6), sibic acid $C_{26}H_{42}O_2$ (\vdash_5), and highly unsaturated fatty C_{22} -acid such as $C_{23}H_{46}O_2$ (\vdash_5), etc. In addition to these compounds, it appears also to contain $C_{23}H_{42}O_2$ (\vdash_7), $C_{23}H_{14}O_2$ (\vdash_6), etc. Highly unsaturated C_{23} -fatty acids have not yet been reported as occurring in any other oils.

Since the authors found shortly before scoliodonic acid $C_{24}H_{38}O_2$ (Γ_5) in a shark liver oil (Scoliodon laticaudus Müller and Henle), the research of these kinds of highly unsaturated fatty acids of higher molecules became to arouse interest in our country. Thus, Y. Toyama and T. Tsuchiya⁽⁶⁾ found nisinic acid $C_{24}H_{36}O_2$ and scoliodonic acid $C_{21}H_{38}O_2$ in herring oil, sardine oil and other

⁽⁶⁾ Y. Toyama and T. Tsuchiya, J. Soc. Chem. Ind., Japan, 37 (1934), 530 B.

fish oils, S. Ueno and C. Yonese⁽⁷⁾ detected not only these new acids, but also thynnic acid $C_{23}H_{40}O_2$, sibic acid $C_{26}H_{42}O_2$, etc.

In consideration of the distribution of constituent acids in several kinds of fish oils, the general distribution curves of fatty acid shown in Fig. 2 can

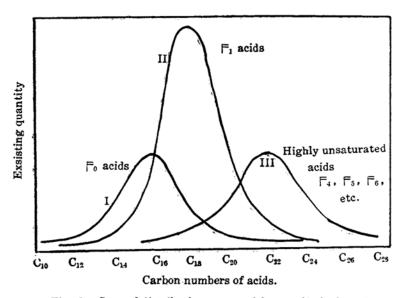


Fig. 2. General distribution curves of fatty acids in fish oil.

be assumed. From curve III, it is evident that the highly unsaturated C₂₈-acids have a possible existence. Nevertheless, to our vexation in the present experiment, these compounds have not been isolated in a pure state, but their occurrence could only be suggested by the bromine contents of bromides.

Unsaponifiable substances contain 35.4% of cholesterol $C_{27}H_{46}O$, and the remainder, which is in liquid state, seems to be composed chiefly of oleyl alcohol $C_{18}H_{38}OH$.

It is a characteristic of this oil that it contains comparatively large quantities of higher molecular C₂₀- and C₂₂-acids, among which the authors have isolated an acid C₂₂H₄₂O₂, undoubtedly cetoleic acid.

Department of Chemical Technology, Faculty of Engineering, Osaka Imperial University, Japan.

⁽⁷⁾ S. Ueno and C. Yonese, J. Chem. Soc. Japan, 57 (1936), 322.